
Introduction to HTML5 canvas

By M. Barsky

Today

• We are going to learn how to dynamically
draw on the HTML page.

• In preparation to our first big assignment –
creating board games in the browser.

You plan to add

a real-time graphics into your HTML page:

• A chart based on dynamic data

• Animation

• Game rendering engine

• User-driven graphics updates

What technology to use?

Choose the “correct” answer

A. Just use Flash, it works on most browsers.

B. Take a look at HTML5 and see if there are any
new technologies that might help (hint: there
might be one named canvas).

C. Write a custom application for every device, that
way you know the exact experience you’re going
to get.

D. Just compute the image on the server side and
deliver a custom image back to the browser.

Canvas

• HTML 5 defines the <canvas> element as “a
resolution-dependent bitmap canvas which
can be used for rendering graphs, game
graphics, or other visual images on the fly.”

• With HTML5’s new canvas element, you’ve got
the power to create, manipulate and destroy
pixels, right in your own hands.

http://www.whatwg.org/specs/web-apps/current-work/multipage/the-canvas-element.html

Canvas as an HTML element

• A canvas is a rectangle in your page where you can draw
anything you want using JavaScript.

• Creating a canvas element:

<section>

<canvas id="boardCanvas" width="240" height="240">

</canvas>

</section>

To see canvas – add a border

canvas
{

border:2px solid black;
position:absolute;
top:50%;
left:50%;
margin-left:-120px;
margin-top:-120px;

}

TTT_board_0.html

https://googledrive.com/host/0B7AfHw5TTmtUYkdueFRrbmNNWDg

Accessing canvas in JavaScript

• You can have more than one <canvas> element on the
same page.

• Each canvas will show up in the DOM, and each canvas
maintains its own state.

• If you give each canvas an id attribute, you can access them
just like any other element:

<canvas id="boardCanvas" width="240" height="240">
</canvas>

var canvasElem = document.getElementById("boardCanvas");

Creating canvas element on the fly

var canvas = document.createElement('canvas');

canvas.width = window.clientWidth;

canvas.height = window.clientHeight;

2D context

canvasElem = document.getElementById("boardCanvas");

context = canvasElem.getContext("2d");

• Every canvas has a drawing context. Once you’ve found a
<canvas> element in the DOM, you call its getContext()
method. You must pass the string "2d" to the getContext()
method.

• The drawing context is where all the drawing methods and
properties are defined.

The HTML5 specification notes, “A future version of this specification will probably define
a 3d context.” For now, take a look at WebGL

http://en.wikipedia.org/wiki/WebGL

Context properties for drawing
rectangles

• The fillStyle property can be a CSS color, a pattern, or a
gradient. (More on gradients shortly.) The default fillStyle is
solid black, but you can set it to whatever you like. Each
drawing context remembers its own properties as long as the
page is open, unless you do something to reset it.

– fillRect (x, y, width, height) draws a rectangle filled with the
current fill style.

Context properties for drawing
rectangles

• The strokeStyle property is like fillStyle — it can be a CSS color,
a pattern, or a gradient.

– strokeRect(x, y, width, height) draws an rectangle with the
current stroke style. strokeRect doesn’t fill in the middle; it
just draws the edges.

– clearRect(x, y, width, height) clears the pixels in the
specified rectangle.

Drawing a rectangle

//draw filled rectangle at coordinate x, y, size: width, height
context.fillRect(50, 25, 150, 100);

TTT_board_1.html
canvas_intro_1.js

• Calling the fillRect() method draws the rectangle and fills it
with the current fill style, which is black until you change it.

• The rectangle is bounded by its upper-left corner (50, 25),
its width (150), and its height (100).

https://googledrive.com/host/0B7AfHw5TTmtUR1VfOS1FLVhhNE0
https://googledrive.com/host/0B7AfHw5TTmtUV0MxaFpRRjNmLXc

Coordinate system

• When you define width and
height of a canvas element,
you define the amount of
pixels to be stored in this
canvas

• If you define canvas size using
CSS, this will stretch or
compress the displayed result
accordingly but will not have
an effect on the number of
pixels

• The default (if not defined
explicitly) canvas size: 300 x
150 pixels

X

Y

Drawing lines

• Imagine you’re drawing a picture in ink. You don’t want
to just dive-in and start drawing with ink, because you
might make a mistake. Instead, you sketch the lines
and curves with a pencil, and once you’re happy with
it, you trace over your sketch in ink.

• Each canvas has a path. Defining the path is like
drawing with a pencil. You can draw whatever you like,
but it won’t be part of the finished product until you
pick up the quill and trace over your path in ink.

Drawing lines

• To draw straight lines “in pencil”, you use the following two
methods:

moveTo(x, y) moves the pencil to the specified starting point.

lineTo (x, y) draws a line to the specified ending point.

• “Inking” methods include:

stroke()

fill()

Stroking a line

h = canvasElem.height;
w = canvasElem.width;
cellH = h/3;
cellW = w/3;

//stroke a line
context.beginPath();
context.moveTo(0,cellH);
context.lineTo(w,cellH);
context.stroke();

TTT_board_2.html
canvas_intro_2.js

https://googledrive.com/host/0B7AfHw5TTmtUQlV5YnlENXE1emM
https://googledrive.com/host/0B7AfHw5TTmtUN0NMQXJvdDVZWVU

Drawing a 3 x 3 grid
The more you call moveTo() and lineTo(), the bigger the path gets. These are
“pencil” methods — you can call them as often as you like, but you won’t see
anything on the canvas until you call one of the “ink” methods.

//stroke 2 horizontal and 2 vertical lines to create a grid
context.beginPath();
for (var i=1; i< 3; i++)
{

context.moveTo(0,i*cellH);
context.lineTo(w,i*cellH);

context.moveTo(i*cellW,0);
context.lineTo(i*cellW,h);

}
context.stroke();

TTT_board_3.html
canvas_intro_3.js

https://googledrive.com/host/0B7AfHw5TTmtUME5WN3BEQWxOZDA
https://googledrive.com/host/0B7AfHw5TTmtUZHpaeFZjWXd3VE0

Drawing images

• The canvas drawing context defines a drawImage()
method for drawing an image on a canvas.

• The method can take three, five, or nine arguments.
– drawImage(image, dx, dy) takes an image and draws it on

the canvas. The given coordinates (dx, dy) will be the
upper-left corner of the image. Coordinates (0, 0) would
draw the image at the upper-left corner of the canvas.

– drawImage(image, dx, dy, dw, dh) takes an image, scales it
to a width of dw and a height of dh, and draws it on the
canvas at coordinates (dx, dy).

Getting an access to an image

• To draw an image on a canvas, you need an image.

• The image can be an existing element, or you
can create an Image() object with JavaScript.

• Either way, you need to ensure that the image is fully
loaded before you can draw it on the canvas.

Drawing an existing image

<canvas id="e" width="177" height="113"></canvas>

<script>

window.onload = function() {

var canvas = document.getElementById("e");

var context = canvas.getContext("2d");

var cat = document.getElementById("cat");

context.drawImage(cat, 0, 0);

};

</script>

Using an Image() object
var bgImage = new Image();
bgImage.src = 'images/bg.png'; //path starting from html file, not js file

bgImage.onload = function () {
context.drawImage(bgImage,0,0,297,297);
//stroke a grid over an image
context.beginPath();
for (var i=1; i< 3; i++) {

context.moveTo(0,i*cellH);
context.lineTo(w,i*cellH);
context.moveTo(i*cellW,0);
context.lineTo(i*cellW,h);

}
context.stroke();

}

TTT_board_4.html
canvas_intro_4.js

https://googledrive.com/host/0B7AfHw5TTmtUbnhPVzBnVHk2V2s
https://googledrive.com/host/0B7AfHw5TTmtUbUZGZGppR2NwUEk

Drawing clipped images

takes an image, clips it to the
rectangle (sx, sy, sw, sh), scales
it to dimensions (dw, dh), and
draws it on the canvas at
coordinates (dx, dy).

drawImage(image, sx, sy, sw, sh, dx, dy, dw, dh)

Example: tile set

tilesetImage = new Image();
tilesetImage.src = "images/tileset.png";
tilesetImage.onload = function () {

for(var i=0;i<3;i++) {
for(j=0; j<3; j++)

context.drawImage(tilesetImage,
i*63,0,
63,64,
i*cellW,j*cellH,
cellW,cellH);

}
}

Result: TTT_board_5.html
canvas_intro_5.js

drawImage(image, sx, sy, sw, sh, dx, dy, dw, dh)

252 x 64 pixels

https://googledrive.com/host/0B7AfHw5TTmtUNENNMkZoSFRvcUk
https://googledrive.com/host/0B7AfHw5TTmtUbzMxODY2dTBkbTQ

Example: random map from a tile set

TTT_board_6.html

canvas_intro_6.js

https://googledrive.com/host/0B7AfHw5TTmtUc1NtTVNPbGVfdUU
https://googledrive.com/host/0B7AfHw5TTmtUOGNBVE9sY2FCNW8

Adding canvas onclick event

//on click - draws rectangle of the corresponding player's color

canvasElem.addEventListener("click",changeCell, false);

Determining the tile that was clicked
function changeCell (e)
{

var x;
var y;

if (e.pageX || e.pageY) {
x = e.pageX;
y = e.pageY;

}
else {

x = e.clientX + document.body.scrollLeft + document.documentElement.scrollLeft;
y = e.clientY + document.body.scrollTop + document.documentElement.scrollTop;

}

var clickedCellX = Math.floor ((x - canvasElem.offsetLeft) / cellW);
var clickedCellY = Math.floor ((y - canvasElem.offsetTop) / cellH);

}

Event object that
called the
function

Determining the tile that was clicked
function changeCell (e)
{

var x;
var y;

if (e.pageX || e.pageY) {
x = e.pageX;
y = e.pageY;

}
else {

x = e.clientX + document.body.scrollLeft + document.documentElement.scrollLeft;
y = e.clientY + document.body.scrollTop + document.documentElement.scrollTop;

}

var clickedCellX = Math.floor ((x - canvasElem.offsetLeft) / cellW);
var clickedCellY = Math.floor ((y - canvasElem.offsetTop) / cellH);

}

Finding page
coordinates where
the click event
happened: for
different browsers

Determining the tile that was clicked
function changeCell (e)
{

var x;
var y;

if (e.pageX || e.pageY) {
x = e.pageX;
y = e.pageY;

}
else {

x = e.clientX + document.body.scrollLeft + document.documentElement.scrollLeft;
y = e.clientY + document.body.scrollTop + document.documentElement.scrollTop;

}

var clickedCellX = Math.floor ((x - canvasElem.offsetLeft) / cellW);
var clickedCellY = Math.floor ((y - canvasElem.offsetTop) / cellH);

}
Converting to canvas
coordinates

var playerColors = ["rgb(255,0,0)","rgb(0,0,255)"];

context.fillStyle=playerColors[playerIndex];

context.fillRect(clickedCellX*cellW, clickedCellY*cellH, cellW, cellH);

nextPlayer();

Result:
TTT_board_7.html

canvas_intro_7.js

Drawing a rectangle of a player’s color
– on click

cellW

ce
llH

tile (1,2)

https://googledrive.com/host/0B7AfHw5TTmtUc1hVbEplSzVGYUU
https://googledrive.com/host/0B7AfHw5TTmtUREFEZEJPYmhIQVk

Drawing triangles
context.save();

context.fillStyle=playerColors[playerIndex];

context.beginPath();

context.moveTo((clickedCellX)*cellW,(clickedCellY+1)*cellH);

context.lineTo(clickedCellX*cellW + cellW/2,clickedCellY*cellH);

context.lineTo((clickedCellX+1)*cellW,(clickedCellY+1)*cellH);

context.fill();

context.restore();

Store context state to
restore it later to its
original state

cellW

ce
llH

tile (1,2)

Drawing an arc, circle, oval

context.arc(x, y, radius, startAngle, endAngle, antiClockwise);

Drawing a circle

context.arc(200, 200, 30, 0, 2 * Math.PI, false);

Drawing an oval

function drawEllipse(context,
cx, cy, radius, rx, ry, tx, ty){

…

context.scale(rx, ry);

context.translate(tx, ty/2);

context.arc(cx, cy, radius,
0, 2 * Math.PI, false);

…

}

More on canvas
transformations

Draw at
(0,0)

Scale
0.5 on
X axis

Move to the
corresponding
cell

http://tutorials.jenkov.com/html5-canvas/transformation.html

TTT with shapes

TTT_board_8.html

canvas_intro_8.js

https://googledrive.com/host/0B7AfHw5TTmtUd3E1d1VqU1dfTVk
https://googledrive.com/host/0B7AfHw5TTmtUVGg3WmxwYS1pd28

Drawing text

• To draw text on canvas, you set font attributes and
call fillText:

context.textBaseline = "top";

context.fillText("(0 , 0)", 8, 5);

The following font attributes are
available on the drawing context:

• font can be anything you would put in a CSS font rule. That includes font
style, font variant, font weight, font size, line height, and font family.

• textAlign controls text alignment. It is similar (but not identical) to a CSS
text-align rule. Possible values are start, end, left, right, and center.

• textBaseline controls where the text is drawn relative to the starting
point. Possible values are top, hanging, middle, alphabetic, ideographic, or
bottom.

• HTML5 spec

http://www.whatwg.org/specs/web-apps/current-work/multipage/the-canvas-element.html#dom-context-2d-textbaseline

TTT with text

var playerLetters = ["X","O"];

context.font = "bold 2em sans-serif";

context.textBaseline = "middle";

context.textAlign = "center";

//fillText(str, x, y);

context.fillText(playerLetters[playerIndex],
clickedCellX*cellW+cellW/2, clickedCellY*cellH+cellH/2);

TTT_board.html

canvas_intro.js

https://googledrive.com/host/0B7AfHw5TTmtUT2Zkb0otRmM0a2s
https://googledrive.com/host/0B7AfHw5TTmtUMVBJcVZNaVo3QzQ

Combining timer events with image
drawing to produce an effect of

animation

• Animation is the rapid display of a sequence of
images to create an illusion of movement.

• We can draw clipped images at different times to
produce an animation effect on canvas

Spritesheet-based animation

• To create a cat moving
across canvas we will use
images sliced out at some
cells of this sprite sheet:

– To move left: 8 first
images at row 2

– To move right: 8 first
images at row 1

Reminder: JS timer loop

• To start a timer loop with 30 frames per second = 1000/30
milliseconds between timer ticks:

var fps = 30;

var loopHandler=setInterval(draw, 1000/FPS);

• To stop this animation:

clearInterval(loopHandler)

Drawing sprites at each timer tick

context.drawImage(spriteImage, currentSpriteX, currentSpriteY,
spriteCellW, spriteCellH, currentX, h/2,
spriteCellW*1.5,spriteCellH*1.5);

//changes source image by slicing different pieces of a sprite
sheet

currentSpriteX += 1;

//moves an image 3 pixels to the left

currentX += 3;

Result:
spriteanimation.html

canvas_animation.js

https://googledrive.com/host/0B7AfHw5TTmtUb1Q5X1NSbk5KdTQ
https://googledrive.com/host/0B7AfHw5TTmtUNnp5cHZPdWZZUWM

Only with canvas:
procedural animation

• Randomly varying one coordinate in an array of
points outlining the shape

Example: upset lonely iRock

proceduralAnimation.html

irock_animation.js

https://googledrive.com/host/0B7AfHw5TTmtUOTU1NTk1Vno3bUU
https://googledrive.com/host/0B7AfHw5TTmtUQXhKcFVETEdITGc

Further reading:
canvas tutorials

• Mozilla developer network

• Safari developer library

https://developer.mozilla.org/en-US/docs/HTML/Canvas/Tutorial
http://developer.apple.com/library/safari/#documentation/AudioVideo/Conceptual/HTML-canvas-guide/Introduction/Introduction.html

