
Web applications

With NodeJS

INTRODUCTION

What is Node

• Node is a new platform for developing web
application servers, and general purpose
programming.

• Node is designed for extreme scalability in
networked applications through

– single execution thread

– event-driven architecture

– asynchronous I/O

How much faster?

Time (seconds)

Loop size PHP node.js

100,000 0.077 0.002

1,000,000 0.759 0.016

10,000,000 7.605 0.157

100,000,000 75.159 1.567

From: http://www.matt-knight.co.uk/2011/node-js-vs-php-performance-maths/

http://www.matt-knight.co.uk/2011/node-js-vs-php-performance-maths/

Like no other

• The Node platform ≠ programming languages for
web applications (PHP/Python/Ruby/Java/ …)

• The Node server ≠ the containers which deliver
the HTTP protocol to web clients
(Apache/Tomcat/Glassfish/ …).

• Normally: the server model uses blocking I/O and
threads for concurrency.

Blocking I/O causes threads to wait on I/O while the
application server handles requests.

Node: main ideas

• A single execution thread

• Event loop is constantly running and dispatching
the next immediately runnable task

• I/O calls do not block the thread. Instead,
programmer sets up request handling functions
that fire when some things become available.

• We already familiar with this model: The event
loop and event handler model is used for
JavaScript execution in a web browser.

JavaScript

• Before it was used for adding basic interactivity to
your web pages – on the client side – “frontend”.

• With the introduction of jQuery, Prototype, Ajax –
more powerful tasks for JavaScript. But this was
all still frontend stuff.

• To write “backend”- you learned PHP, Ruby, Java…

• Node.js: JavaScript on the server?

NodeJS is a new context for JavaScript

• JavaScript is a "complete" language: you can use it in many contexts
and achieve everything with it you can achieve with any other
"complete" language.

• Usual context to run JS code: browser
• New context to run JS code: NodeJS – allows to run JS code outside

the browser

• To execute any code it needs to be interpreted. That is exactly what
browser software did and what NodeJS does. It uses the same
Google's V8 Virtual Machine, the same runtime environment for
JavaScript that Google Chrome uses.

• Node.js is really two things: a runtime environment and a library.

Node runs JavaScript,
but isn’t JavaScript

• Node is a program for running JavaScript, but isn’t JavaScript itself.

• JavaScript is a poor language for writing server-side tools: bad for
dealing with operating system-level sockets and network
connectivity.

• But Node isn’t written in JavaScript; it’s written in C!

• JavaScript is sending instructions to a C program that can be carried
out in the dungeons of your OS.

• Node is a program that you feed JavaScript instructions. You can
actually write a server without worrying about how it is
implemented in C.

Node in the enterprise world

• eBay released ql.io, an event-driven aggregation tool for API
consumption.

• LinkedIn has said publicly that they achieved massive performance gains
with Node.

• Voxer is using Node and Riak to build its walkie talkie-style mobile app
(and have open sourced their in-house Riak client)

• Yahoo has used Node to develop their Mojito platform.

• WalMart Labs has been using lots of Node in mobile development.

• Promising game development done using tools like Node, socket.io, and
Redis. Example: http://ajaxian.com/archives/aves-game-engine

• Even Oracle announced that they planned to develop Nashorn, a JVM-
based JavaScript engine.

http://www.ebaytechblog.com/2011/11/30/announcing-ql-io/
http://venturebeat.com/2011/08/16/linkedin-node/
http://voxer.com/
http://basho.com/blog/technical/2012/06/27/Riak-at-Voxer/
https://github.com/mranney/node_riak
https://github.com/yahoo/mojito/
http://adtmag.com/blogs/watersworks/2012/01/wal-mart-backs-node.aspx
https://geoloqi.com/blog/2011/09/building-a-real-time-location-based-urban-geofencing-game-with-socket-io-redis-node-js-and-sinatra-synchrony/
http://socket.io/
http://redis.io/
http://ajaxian.com/archives/aves-game-engine
http://www.infoworld.com/d/application-development/oracle-prepping-its-nashorn-javascript-engine-175159
http://en.wikipedia.org/wiki/Nashorn_(JavaScript_engine)

UNDERSTAND HOW TO USE
JAVASCRIPT IN NODE CONTEXT

Goal:

Based on:
https://github.com/ManuelKiessling/NodeBeginnerBook/tree/master/code/application

https://github.com/ManuelKiessling/NodeBeginnerBook/tree/master/code/application

Case study: customizable web page

Specifications:
• When requesting http://domain/start, the user should see a

welcome page which displays a file upload form.

• By choosing an image file to upload and submitting the form,
this image should then be uploaded to http://domain/upload,
where it is displayed once the upload is finished.

To do list

• Create an HTTP server

• Design request router

• Design request handlers

HTTP SERVER

Task 1

Implementing server and app at the
same time

• The typical setup would be an Apache HTTP server with
mod_php5 installed.
This means that serving requests doesn't happen within PHP
itself.

• With Node.js, we not only implement our application, we also
implement the whole HTTP server. Our web application and
its web server are basically the same.

NodeJS programming:
separation of concerns

• To keep the different parts of the code separated we put them
into modules.

• This allows us to have a clean main file, which we execute
with Node.js, and clean modules that can be used by the main
file and reused by any other application.

Server module: server.js

var http = require("http");

http.createServer(function(request, response) {
response.writeHead(200, {"Content-Type": "text/plain"});
response.write("Hello World");
response.end();

}).listen(8888);

Explanation step-by-step

• The first line requires the http module and makes it accessible
through the variable http.

• We then call one of the functions the http module offers:
createServer. This function returns an object, and this object has a
method named listen, and takes a numeric value which indicates
the port number our HTTP server is going to listen on.

var http = require("http");

var server = http.createServer();
server.listen(8888);

• That starts an HTTP server listening at port 8888 and doing nothing
else (not even answering any incoming requests).

Parameter of createServer: function

function(request, response) {
response.writeHead(200, {"Content-Type": "text/plain"});
response.write("Hello World");
response.end();

}

• This function definition IS the first (and only) parameter we
are giving to the createServer() call.

• Reminder: in JavaScript, functions can be passed around like
any other value.

We could write it as a named function

var http = require("http");

function onRequest(request, response) {
response.writeHead(200, {"Content-Type": "text/plain"});
response.write("Hello World");
response.end();

}

http.createServer(onRequest).listen(8888);

Now it is clear: server.js

var http = require("http");

http.createServer(function(request, response) {
response.writeHead(200, {"Content-Type": "text/plain"});
response.write("Hello World");
response.end();

}).listen(8888);

CALLBACKS VS SEQUENTIAL
EXECUTION. DATABASE QUERIES

Digression:

Normal vs. asynchronous execution

var result = database.query("SELECT
* FROM hugetable");

console.log("Hello World");

database.query("SELECT * FROM
hugetable", function(rows)
{var result = rows; });

console.log("Hello World");

• Sequential: finish reading all the results, then execute the
next line of code. The user would have to wait for the
database query to finish before he can see a message.

• In the execution model of PHP, the web server starts its
own PHP process for every HTTP request. If one of these
requests results in the execution of a slow piece of code,
it results in a slow page load for this particular user, but
other users requesting other pages would not be
affected.

Normal vs. asynchronous execution

var result = database.query("SELECT
* FROM hugetable");

console.log("Hello World");

database.query("SELECT * FROM
hugetable", function(rows)
{var result = rows; });

console.log("Hello World");

• Asynchronous: continue to the next line of code, and
constantly check whether the slow process finished. When
finished, execute callback code.

• In Node there is only one single process. If there is a slow
database query somewhere in this process, this affects the
whole process - everything comes to a halt until the slow
query has finished.

• To avoid this, Node introduces the concept of event-driven,
asynchronous callbacks, by utilizing an event loop.

Normal vs. asynchronous execution

var result = database.query("SELECT
* FROM hugetable");

console.log("Hello World");

Here our code is synchronous:

first do the database query, and only
when this is done,

then write to the console.

database.query("SELECT * FROM
hugetable", function(rows)
{var result = rows; });

console.log("Hello World");

Here, instead of expecting
database.query() to directly return a
result to us, we pass it a second
parameter, an anonymous function
…

Asynchronous request handling

Node.js can handle the database request asynchronously.

• It takes the query and sends it to the database.

• Instead of waiting for it to be finished, it makes a note that
says "When in the future the database server is done and
sends the result, then I have to execute the anonymous
function that was passed to database.query()."

• Then, it immediately executes console.log(), and afterwards, it
enters the event loop.

• Node.js continuously cycles through this loop again and again
whenever there is nothing else to do, waiting for events.
Events like, e.g., a slow database query finally delivering its
results.

Asynchronous database drivers

To take advantage of asynchronous database queries,
we need a database that can notify event loop about
finishing its query

• SQLite

• Redis

• MongoDB

• …

MongoDB

• MongoDB (from "humongous") is an open source
document-oriented database system developed
and supported by 10gen.

• It is part of the NoSQL family of database
systems.

• Instead of storing data in tables as is done in a
"classical" relational database, MongoDB stores
structured data as JSON-like documents with
dynamic schemas (MongoDB calls the format
BSON).

http://en.wikipedia.org/wiki/Document-oriented_database
http://en.wikipedia.org/wiki/10gen
http://en.wikipedia.org/wiki/NoSQL
http://en.wikipedia.org/wiki/Relational_database
http://en.wikipedia.org/wiki/JSON
http://en.wikipedia.org/wiki/BSON

Start mongodb

• Installation: http://www.mongodb.org/

• Installed in the lab

• Before issuing queries from Node application,
need to start database server. Example:
http://docs.mongodb.org/manual/tutorial/ma
nage-mongodb-processes/

http://www.mongodb.org/
http://docs.mongodb.org/manual/tutorial/manage-mongodb-processes/

MongoDB example: connection

var databaseUrl = "localhost:27017/somedb";

var collections = ["users", "reports"];

var db = require("mongojs").connect(databaseUrl, collections);

insertTestData();

performTestQuery ();

MongoDB is always
listening on port 27017

NPM driver Library
to be installed

MongoDB example: insertTestData

db.users.save(
{email: "mgbarsky@server.com", password: "ggg", sex:
"female"},

function(err, saved)
{

if(err){ console.log(err); }
if(!saved)

{ console.log("User not saved"); }
else

{console.log("User 2 saved");
}

);

Callback function –
executed when save is
complete

performTestQuery

db.users.find({sex: "female"},

function(err, users) {

if(err || !users) console.log("No female users found");

else users.forEach(

function(femaleUser) {

console.log(femaleUser);

});

});

