
Web applications with NodeJS

Part II

Back to HTTP server

var http = require("http");

function onRequest(request, response) {
}

http.createServer(onRequest).listen(8888);

• Node HTTP server needs an asynchronous callback function it can call upon
incoming requests.

• If it were synchronous, and if a second user requests the server while it is still
serving the first request, that second request could only be answered after
the first one is done.

• After all, Node.js is just one single process, and it can run on only one single
CPU core.

One thread – advantage or limitation?

“NodeJS model allows to write applications that
have to deal with concurrency in an efficient and
relatively straightforward manner.“

Test yourself: What is executed first?

1. var http = require("http");

function onRequest(request, response) {
2. console.log("Request received.");
3. response.writeHead(200, {"Content-Type": "text/plain"});
4. response.write("Hello World");
5. response.end();

}

6. http.createServer(onRequest).listen(8888);

7. console.log("Server has started.");

ROUTING REQUESTS

Task 2

Handling requests

• When the callback function onRequest() gets triggered, two
parameters are passed into it: request and response.

• Those are objects, and we can use their methods to handle the
details of the HTTP request and to respond to the request (i.e., to
actually send something over the wire back to the browser that
requested your server).

• In our exampe: whenever a request is received, it uses the
response.writeHead() function to send an HTTP status 200 and
content-type in the HTTP response header, and the response.write()
function to send the text "Hello World" in the HTTP response body.

• At last, we call response.end() to actually finish our response.

Handling requests

function onRequest(request, response) {
console.log("Request received.");
response.writeHead(200, {"Content-Type": "text/plain"});
response.write("Hello World");
response.end();

}

• Whenever a request is received:
– it uses the response.writeHead() function to send an HTTP status 200

and content-type in the HTTP response header.
– It uses the response.write() function to send the text "Hello World" in

the HTTP response body.
– at last, we call response.end() to indicate that this is the end of our

response.

WRITING NODE MODULES.
END OF GLOBAL VARIABLES

Digression

Using modules in Node

var http = require("http");

...

http.createServer(...);

• There is a module called "http", we can make use of it in our code by
requiring it and assigning the result of the require to a local variable.

• This makes our local variable an object that carries all the public methods
the http module provides.

• It's common practice to choose the name of the module for the name of
the local variable, but we are free to choose whatever we like:

var foo = require("http");

...

foo.createServer(...);

Creating our own modules: server.js

var http = require("http");

function start() {
function onRequest(request, response) {

console.log("Request received.");
response.writeHead(200, {"Content-Type": "text/plain"});
response.write("Hello World");
response.end();

}

http.createServer(onRequest).listen(8888);
console.log("Server has started.");

}

exports.start = start;

Make function start visible
outside our module.

Calling our function from another
module

• In file index.js:

var server = require("./server");

server.start();

• Now we can put the different parts of our application
into different files and wire them together by making
them modules.

Global object

• One of the main disadvantages of JavaScript is
the Global Object.

• Since web applications may have lot of objects,
JavaScript could be a minefield of conflicting
global objects.

• Node uses the CommonJS module system:
variables local to a module are truly local to this
module.

• This clean separation between modules prevents
the Global Object problem from being a problem.

Handling requests

• Depending on which URL the browser requested
from our server, we need to react differently.

• Making different requests point at different parts of
our code is called "routing“.

• We need to look into the HTTP requests and extract
the requested URL as well as the GET/POST
parameters from them.

• We need to feed this data into our router, and based
on these, the router then needs to decide which
code to execute.

Request object

• All the information we need is available
through the request object which is passed as
the first parameter to our callback function
onRequest().

• To interpret this information, we need some
additional Node.js modules, namely url and
querystring.

url module

url.parse(string).query
|

url.parse(string).pathname |
| |
| |

------ -------------------
http://localhost:8888/start?foo=bar&hello=world

--- -----
| |
| |

querystring(string)["foo"] |
|

querystring(string)["hello"]

Parsing path name

function onRequest(request, response) {
var pathname = url.parse(request.url).pathname;
console.log("Request for " + pathname + " received.");
response.writeHead(200, {"Content-Type": "text/plain"});
response.write("Hello World");
response.end();

}

• Our application can now distinguish requests based on the URL
path requested.

• This allows to map requests to request handlers based on the URL
path using our (yet to be written) router.

(In the context of our application, it simply means that we will be able
to have requests for the /start and /upload URLs handled by different
parts of our code).

router.js

function route(pathname) {
console.log("About to route a request for " + pathname);

}

exports.route = route;

Wiring router into a server

• Our HTTP server needs to know about and make use
of our router.

• We could hard-wire router object into the server, but
instead we are going to loosely couple server and
router by injecting this dependency (Martin Fowlers
post on Dependency Injection).

http://martinfowler.com/articles/injection.html

Passing route as a parameter
to server start

function start (route) {
function onRequest(request, response) {

var pathname = url.parse(request.url).pathname;
console.log("Request for " + pathname + " received.");

route(pathname);

response.writeHead(200, {"Content-Type": "text/plain"});
response.write("Hello World");
response.end();

}

http.createServer(onRequest).listen(8888);
console.log("Server has started.");

}

index.js

var server = require("./server");
var router = require("./router");

server.start(router.route);

• And here we are passing an application-specific
router.

Digression: The Kingdom of verbs

• In our index file, we could have passed the router
object into the server, and the server could have called
this object's route function.

• This way, we would have passed a thing, and the server
would have used this thing to do something.

• But the server doesn't need the thing. It only needs to
get something done, and to get something done, you
don't need things at all, you need actions. You don't
need nouns, you need verbs.

• Unlike regular OOP, where everything is a noun, this is
a functional programming.

Execution in the Kingdom of Nouns.

http://steve-yegge.blogspot.com/2006/03/execution-in-kingdom-of-nouns.html

REQUEST HANDLERS

Task 3

Module requestHandlers

function start() {
console.log("Request handler 'start' was called.");

}

function upload() {
console.log("Request handler 'upload' was called.");

}

exports.start = start;
exports.upload = upload;

Making handlers extendable

• In a real application, the number of handlers may be very
large.

• A varying number of items, each mapped to a string (the
requested URL)? Sounds like an associative array.

• JavaScript doesn't provide associative arrays - or does it?

Reminder: JavaScript objects vs.
conventional objects

• In C++ or C#, when we’re talking about objects, we're
referring to instances of classes or structs.

• Objects have different properties and methods,
depending on which templates (that is, classes) they
are instantiated from.

• In JavaScript, objects are just collections of name/value
pairs - think of a JavaScript object as a dictionary with
string keys.

• If JavaScript objects are just collections of name/value
pairs, how can they have methods? Well, the values
can be strings, numbers etc. - or functions!

Mapping requests to handler functions

var handle = {};
handle["/"] = requestHandlers.start;
handle["/start"] = requestHandlers.start;
handle["/upload"] = requestHandlers.upload;

server.start(router.route, handle);

Passing handle dictionary to server
start()

function start(route, handle) {
function onRequest(request, response) {
var pathname = url.parse(request.url).pathname;
console.log("Request for " + pathname + " received.");

route(handle, pathname);

response.writeHead(200, {"Content-Type": "text/plain"});
response.write("Hello World");
response.end();

}

In router.js

function route(handle, pathname) {
console.log("About to route a request for " + pathname);
if (typeof handle[pathname] === 'function') {
handle[pathname]();

} else {
console.log("No request handler found for " + pathname);

}
}

• We check if a request handler for the given pathname exists, and if it does,
we simply call the corresponding function, pulled out of the handle
dictionary.

Making the request handlers respond

function start() {
console.log("Request handler 'start' was called.");
return "Hello Start";

}

function upload() {
console.log("Request handler 'upload' was called.");
return "Hello Upload";

}

Returning content from router based
on requested path

function route(handle, pathname) {
console.log("About to route a request for " + pathname);
if (typeof handle[pathname] === 'function') {
return handle[pathname]();

} else {
console.log("No request handler found for " + pathname);
return "404 Not found";

}
}

For path “/start”, this will call function start which returns string “Hello start”

In server.js

response.writeHead(200, {"Content-Type": "text/plain"});
var content = route(handle, pathname)
response.write(content);
response.end();

Here, route will return a corresponding text, which we store in variable content
and write the dynamic message back to client.

Do we see the problem with our
design?

What if one of the request handlers wants to
make use of a non-blocking operation in the
future?

Sleep for 10 seconds when start is
requested

function start() {
console.log("Request handler 'start' was called.");

function sleep(milliSeconds) {
var startTime = new Date().getTime();
while (new Date().getTime() < startTime + milliSeconds);

}

sleep(10000);
return "Hello Start";

}

function upload() {
console.log("Request handler 'upload' was called.");
return "Hello Upload";

}

We think that:

• When the function start() is called, Node.js waits 10
seconds and only then returns "Hello Start".

• When calling upload(), it returns immediately, just
like before.

(Of course, you should imagine that instead of sleeping
for 10 seconds, there would be a real blocking
operation in start(), like some sort of a database query.)

That is not what happens

• If you run the app in 2 different browsers, and
request /start in one and /upload in another,
you will notice that:

– The /start URL takes 10 seconds to load, as we
would expect.

– But the /upload URL also takes 10 seconds to
load, although there is no sleep() in the
corresponding request handler.

Why?

• Because start() contains a blocking operation.

• For the Node execution model expensive
operations are ok, but we cannot block the
entire single Node.js process with them.

• Instead, whenever expensive operations must
be executed, they must be put in the
background, and their events must be handled
by the event loop.

Introducing a non-blocking operation

var exec = require("child_process").exec;

function start() {
console.log("Request handler 'start' was called.");
var content = "empty";

exec("ls -lah", function (error, stdout, stderr) {
content = stdout;

});

return content;
}

• What exec() does: it executes a shell command from within Node.js.
• In this example, we use it to get a list of all files in the current directory ("ls -lah"),

allowing us to display this list in the browser of a user requesting the /start URL.

New problems

• What the code does is: creates a new variable
content (with an initial value of "empty"),
executes "ls -lah", fills the variable with the
result, and returns it.

• If you try it, it loads a beautiful web page that
displays the string "empty". Why?

What is the problem?

• exec() does its magic in a non-blocking fashion.
That's a good thing, because we can execute very
expensive shell operations without forcing our
application into a full stop as the blocking sleep
operation did.

• However, return content line is executed before
the asynchronous call to exec() finished, and the
result is still empty when it is returned.

Why it does not work

• exec(), in order to work non-blocking, makes use of a callback
function.

• In our example, it's an anonymous function which is passed as
the second parameter to the exec() function call:

exec("ls -lah", function (error, stdout, stderr) {
content = stdout;

});

• exec() does something in the background, while Node.js itself
continues with the application

• the callback function we passed into exec() will be called only
when the exec has finished running.

NO to the synchronous code!

• Our own code is being executed
synchronously, which means that immediately
after calling exec(), Node.js continues to
execute return content;.

• To fix the problem, we need to return the
response after exec has finished.

Fixing the problem: passing response
object to the router

function start(route, handle) {
function onRequest(request, response) {
var pathname = url.parse(request.url).pathname;
console.log("Request for " + pathname + " received.");

route(handle, pathname, response);
}

http.createServer(onRequest).listen(8888);
console.log("Server has started.");

}

• Instead of expecting a return value from the route() function, we pass it a
third parameter, our response object.

• Furthermore, we removed any response method calls from the onRequest()
handler, because we now expect route to take care of that.

In router.js: passing response to the
handler

function route(handle, pathname, response) {
console.log("About to route a request for " + pathname);
if (typeof handle[pathname] === 'function') {
handle[pathname](response);

} else {
…

}
}

• Same pattern: instead of expecting a return value from our
request handlers, we pass the response object on.

In requestHandlers.js: respond inside
the callback function

var exec = require("child_process").exec;

function start(response) {
console.log("Request handler 'start' was called.");

exec("ls -lah", function (error, stdout, stderr) {
response.writeHead(200, {"Content-Type": "text/plain"});
response.write(stdout);
response.end();

});
}

All is non-blocking

Finally, an expensive operation behind /start will
no longer block requests for /upload from being
answered immediately

Longer operation,
but still non-blocking

var exec = require("child_process").exec;

function start(response) {
console.log("Request handler 'start' was called.");

exec("find /",
{ timeout: 10000, maxBuffer: 20000*1024 },
function (error, stdout, stderr) {
response.writeHead(200, {"Content-Type": "text/plain"});
response.write(stdout);
response.end();

});
}

