
Web applications with NodeJS

Part III

Designing NodeJS applications

• We learned in the previous lessons:

Dictionary of actions

• Mapping requests to handler functions

var handle = {};
handle["/"] = requestHandlers.start;
handle["/start"] = requestHandlers.start;
handle["/upload"] = requestHandlers.upload;

• This dictionary of available actions is passed to

server.start(router.route, handle);

Function as a
parameter Dictionary of functions

Functions as
values in a
dictionary

requestHandler.js functions:
first attempt

function start() {
console.log(“Hello start”);

}

function upload() {
console.log(“Hello upload”);

}

router.js

• Router is calling a corresponding function from the
action dictionary, depending on url path

function route(handle, path) {
handle[path]();

}

First, we were writing response in
server.js

• We need to return specific content to server.js so it
can write it using the response object

function start ()

{

…

content = route (handle, pathname);

response.write (content);

router.js was changed:
function route() returns value to server.js

function route (path)

{

…

return handle[path]();

requestHandler.js
functions changed to also return values

function start() {

return “Hello start”;

function upload() {

return “Hello upload”;

And then we encountered a problem

• Our application was able to transport the content
(which the request handlers would like to display to
the user) from the request handlers to the HTTP
server by returning it up through the layers of the
application (request handler -> router -> server).

• But heavy synchronous I/O in start()
blocks all the other requests

If we block start()…

function start()

sleep (10000);

return “Hello start”;

function upload()

return “Hello upload”;

upload() is blocked as well

We changed: making heavy I/Os
asynchronous – non-blocking

function start()

Asynchronous I/O with callback

return result of asynchronous operation

function upload()

return “Hello upload”;

In order to send response
asynchronously

• We need to write response in responseHandler inside
callback function, when asynchronous operation is
complete

• Redesigned: no return values, passing response object to
the handler: server -> router ->handler

• We passed the response object (from our server's
callback function onRequest()) through the router into
the request handlers.

• The handlers are now able to use this object's methods
to respond to requests themselves and in the
appropriate time.

server.js

• We pass response from server.js, so it can be used
when processing is done

start ()

…

route (handle, pathname, response);

router.js

• Router pass response further to requestHandler

function route()

…

handle[pathname](response);

requestHandler.js

• Handler writes the response when it is done
processing I/O

function start(response)

Asynchronous I/O

inside callback function:

response.write(result)

function upload(response)

response.write(“Hello upload”) ;

FINISHING CASE STUDY

Part III

Handling incoming requests

• GET

• POST

Reminder: handling GET requests

http://localhost:8888/start?foo=bar&hello=world

var url = require (“url”);

var url_parts = url.parse(request.url, true);

var pathname = url_parts.pathname; /start

var query = url_parts.query; foo=bar&hello=world

var foovalue = query.foo; bar

var hellovalue = query.hello; world

Handling POST requests

• Simple example: reading content of a textarea
filled by the user and submitted to the server
via POST request.

• Upon receiving and handling this request, we
will display the content of the textarea back to
the user.

Displaying form with textarea
on start() in requestHandler.js

function start(response) {
var body = '<html>'+
'<head>'+
'<meta charset="UTF-8" />'+
'</head>'+
'<body>'+
'<form action="/upload" method="post">'+
'<textarea name=" txtArea" rows="20" cols="60"></textarea>'+
'<input type="submit" value="Submit text" />'+

'</form>'+
'</body>'+
'</html>';
response.writeHead(200, {"Content-Type": "text/html"});
response.write(body);
response.end();

}

POST requests are handled
asynchronously

• The POST request will hit our /upload request
handler when the user submits this form.

• Handling POST data is done in a non-blocking
fashion, by using asynchronous callbacks.

• This makes sense, because POST requests can
potentially be very large - nothing stops the user
from entering text that is multiple megabytes in size.
Handling the whole bulk of data in one go would
result in a blocking operation.

Non-blocking POSTs

• To make the whole process non-blocking, Node.js
serves the POST data in small chunks

• Callback functions are called upon certain events:

– data (an new chunk of POST data arrives)

– end (all chunks have been received)

Listening to data transfer events

request.addListener("data", function(chunk) {
// called when a new chunk of data was received

});

request.addListener("end", function() {
// called when all chunks of data have been received

});

• We need to tell Node.js which functions to call back to when these events
occur.

• This is done by adding listeners to the request object that is passed to our
onRequest callback whenever an HTTP request is received.

Collecting POST data in chunks - server.js
function start(route, handle) {

function onRequest(request, response) {

var postData = "";

var pathname = url.parse(request.url).pathname;

request.setEncoding("utf8");

request.addListener("data", function(postDataChunk) {

postData += postDataChunk;

console.log("Received POST data chunk '"+postDataChunk +

"'.");

});

request.addListener("end", function() {

route(handle, pathname, response, postData);

});

}

Collecting all POST data
and passing it to the router

function start(route, handle) {

function onRequest(request, response) {

var postData = "";

var pathname = url.parse(request.url).pathname;

request.setEncoding("utf8");

request.addListener("data", function(postDataChunk) {

postData += postDataChunk;

console.log("Received POST data chunk '"+postDataChunk + "'.");

});

request.addListener("end", function() {

route(handle, pathname, response, postData);

});

}

Passing postData in router.js

function route(handle, pathname, response, postData)
{

handle[pathname](response, postData);
}

“/upload” Collected in server.js, and
handle is called when all
data has been received

requestHandler.js

• in requestHandlers.js, we include the data in our
response of the /upload request handler:

function upload(response, postData) {
response.writeHead(200, {"Content-Type": "text/plain"});
response.write("You've sent: " + postData);
response.end();

}

Parsing out individual fields of postData

• To parse individual fields of posted data: we use the
querystring module:

var querystring = require("./querystring");

querystring.parse(postData).txtArea

Name of textarea control

Serving images. File system

• In order to serve image file to be displayed on request we add a
new handler in requestHandlers.js

function show(response) {
fs.readFile("/tmp/test.png", "binary", function(error, file) {

response.writeHead(200, {"Content-Type": "image/png"});
response.write(file, "binary");
response.end();

}
});

}

Module fs –
file system

Adding a new action to a dictionary

var handle = {}
handle["/"] = requestHandlers.start;
handle["/start"] = requestHandlers.start;
handle["/upload"] = requestHandlers.upload;
handle["/show"] = requestHandlers.show;

• Made easy due to loose coupling

Result

By restarting the server and opening
http://localhost:8888/show in the browser, the image
file saved at /tmp/test.png should be displayed.

http://localhost:8888/show

Handling file uploads

• All the details of parsing incoming file data are
abstracted in node-formidable module by Felix
Geisendörfer.

npm install formidable

Using formidable library

var formidable = require("formidable");

• Next we need to create a new IncomingForm object,
which is an abstraction of the submitted form

• This object can then be used to parse the request
object of our HTTP server for the fields and files that
were submitted through this form.

The example code
(from the node-formidable project page)

• Referencing libraries

var formidable = require('formidable'),
http = require('http'),
sys = require('sys');

The example code
• Showing a file upload form

http.createServer(function(req, res) {

...
// by default
res.writeHead(200, {'content-type': 'text/html'});
res.end(
'<form action="/upload" enctype="multipart/form-data" '+

'method="post">'+
'<input type="text" name="title">
'+
'<input type="file" name="upload" multiple="multiple">
'+
'<input type="submit" value="Upload">'+
'</form>'

);
}).listen(8888);

The example code
• Inspecting and parsing uploaded form

http.createServer(function(req, res) {

if (req.url == '/upload' && req.method.toLowerCase() == 'post') {
var form = new formidable.IncomingForm();
form.parse(req, function(err, fields, files) {

res.writeHead(200, {'content-type': 'text/plain'});
res.write('received upload:\n\n');
res.end(sys.inspect({fields: fields, files: files}));

});
return;

}

…

}).listen(8888);

Adding file upload functionality to our
code

1. Add a file upload element to the form which is
served at /start,

2. Integrate node-formidable into the upload request
handler, in order to save the uploaded file to
/tmp/test.png,

3. Embed the uploaded image into the HTML output
of the /upload URL.

Changes in design

• We want to handle the file upload in our /upload
request handler, and there, we will need to pass the
request object to the form.parse call of node-
formidable.

• But all we have is the response object and the
postData. Looks like we will have to pass the request
object all the way from the server -> to the router ->
to the request handler.

server.js

• Let's start with server.js - we remove the postData
handling, and we pass request to the router instead:

function start(route, handle) {
function onRequest(request, response) {

var pathname = url.parse(request.url).pathname;
console.log("Request for " + pathname + " received.");
route(handle, pathname, response, request);

}

…
}

router.js

• We don't need to pass postData on anymore, and
instead pass request:

function route(handle, pathname, response, request) {

handle[pathname](response, request);

}

What we have learned

1. Storing functions in a dictionary, expanding
functionality with adding new functions (loosely
coupled objects JavaScript way)

2. Programming with non-blocking functions using
callbacks

3. Writing web server with the full handling of GET
and POST requests. Passing on request and
response objects is probably a good idea, to ensure
the asynchronous treatment.

4. Using Node libraries to handle difficult tasks

• This tutorial is based on the book:
http://www.nodebeginner.org/

• The code is available at:
https://github.com/ManuelKiessling/NodeBeginnerBook/tr
ee/master/code/application

• The Node.js community wiki and the NodeCloud
directory are probably the next points for more
information.

http://www.nodebeginner.org/
https://github.com/ManuelKiessling/NodeBeginnerBook/tree/master/code/application
https://github.com/joyent/node/wiki
http://www.nodecloud.org/

