
Server programming with
JavaScript

NodeJS

(with all code examples in this archive)

https://drive.google.com/uc?export=download&id=0B7AfHw5TTmtUYzF1NVlTVUE2OFk

JavaScript everywhere

A common language for frontend and backend:

• Code can be migrated between server and client more easily

• Common data formats (JSON) between server and client

• Common software tools for server and client

• Common testing or quality reporting tools for server and
client

• Common dialect between server and client teams

JavaScript in a new context

• JavaScript was traditionally running in a browser
context (Browser software is written in low-level
languages)

• NodeJS is a new context for executing JavaScript
modules (NodeJS is written in C)

Installing NodeJS environment

• At home:
https://github.com/joyent/node/wiki/Installation

• On Amazon EC-2:
http://iconof.com/blog/how-to-install-setup-node-
js-on-amazon-aws-ec2-complete-guide/

In the lab (installed):
Open terminal and type:
node -v

https://github.com/joyent/node/wiki/Installation
http://iconof.com/blog/how-to-install-setup-node-js-on-amazon-aws-ec2-complete-guide/

NPM – Node Package Manager
for NodeJS

• Installation:

http://howtonode.org/introduction-to-npm

• In the lab (installed):

npm help

• To see what packages are installed:

npm ls

http://howtonode.org/introduction-to-npm

Installing libraries with NPM

npm install blerg

installs the latest version of blerg.

• You can also give install a tarball, a folder, or a
url to a tarball.

• If you run npm install without additional
arguments, it tries to install into the current
folder.

Let’s install socket.io

• Create a folder where you are going to put all
the examples for node: for example node

cd to this folder and

npm install socket.io

• To check:

npm ls

Sample programs

• Download sample_code.zip, unzip

• It contains 3 demos:

• basics

• simple chat

• 2-player tic-tac-toe

• There is a separate zipped folder: node_modules.
Unzip it and copy its content into simple_chat/js
and board_games/js folders, as these two apps
use socket.io module.

1. BASICS

Hello world, functions, modules

Hello world

Copy all files from basics folder into your node
folder

We are trying to print:

console.log("Hello, world");

Basics: Hello world

In file: 01.01.helloworld.js

• rename to helloworld.js

• To run:

node helloworld

Reminder:
Functions are objects and arguments

function say(word)
{

console.log(word);
}

function execute(someFunction, value)
{

someFunction (value);
}

execute(say,"Hello");

Basics: Functions

In file 01.02.say.js

• rename to say.js

• To run:

node say

Anonymous functions as arguments

function execute(someFunction, value)

{

someFunction(value);

}

execute
(function(word){console.log(word);},"Hello");

Basics: Anonymous functions

In file 01.03.func.js

• rename to func.js

• To run:

node func

Goodbye, global variables

• There is no more global variables: real
encapsulation

• Each variable is visible only inside a module

• To make it publicly visible, we need to export
it

Export entire object (single)

var obj =
{

word:"",
say: function ()
{

console.log(this.word);
}

};

module.exports = obj;

Accessing from a test file

var myobj = require("./mymodule");

myobj.word = "Hello module";

myobj.say();

Module file name in
current directory

Basics: modules

In files:

• 01.04.mymodule.js

• 01.05.moduletest.js

• Run:

node moduletest

Export multiple objects (functions)
var dog ={

say: function () { console.log("Woof"); }

};

function Fish(name, color, length){

this.name=name;

this.color=color;

Fish.prototype.toString = function () {

return "This fish has name:"+this.name +" color:"+this.color;

}

}

exports.dog = dog;

exports.Fish = Fish;

Public name – can be anything

Accessing multiple objects
var mymodule = require("./multimodule");

var mycat = mymodule.cat;

mycat.say();

var aquarium = [];

for (var i=0; i<5; i++){

aquarium.push(new mymodule.Fish("fish "+i, "rgb(0,0,"+(i*10)+")"));

}

for (var i=0; i<aquarium.length; i++)

console.log (aquarium[i]);

Basics: multiple objects in modules

In files:

• 01.06.multimodule.js

• 01.07.multitest.js

• Run:

node multitest

2. BASICS

File I/O

Reading file: normally

var fs = require("fs");

var file1="data/data1.json";

var json1 = fs.readFileSync(file1);

console.log("Read array of size " +
JSON.parse(json1).length+" from file "+file1);

In file: 02.01.readfile.js

Reading 2 files: normally

var file1="data/data1.json";

var json1 = fs.readFileSync(file1);

console.log("Read array of size "+JSON.parse(json1).length+"
from file "+file1);

console.log("Reader 1 reports: done");

var file2="data/data2.json";

var json2 = fs.readFileSync(file2);

console.log("Read array of size "+JSON.parse(json2).length+"
from file "+file2);

console.log("Reader 2 reports: done");

data1.json 636
data2.json 2

Reminder:
blocking vs non-blocking I/Os

var result = database.query("SELECT * FROM hugetable");
console.log("Hello World");

• The program pauses at point when the database layer sends the
query to the database.

• That pause can be long: the entire thread is idling, but another
request might come in, and if all the threads are busy it will be
dropped.

• Threads switching is not free, the more threads we use the more
time the CPU spends in storing and restoring the state and the
execution stack for each thread takes up memory.

• Simply by using asynchronous, event-driven I/O, Node removes
most of this overhead while introducing very little on its own.

Node I/Os

database.query ("SELECT * FROM hugetable",
function(rows) { var result = rows; });

console.log("Hello World");

callback "When at some point in the
future the database server is
done and sends the result of
the query, then I have to
execute the anonymous
function that was passed to
database.query()."

Asynchronous callbacks

• Node asks to think differently about
concurrency: callbacks fired asynchronously
from an event loop are a simpler concurrency
model.

• Node.js continuously cycles through event
loop whenever there is nothing else to do,
waiting for events. Events like, e.g., a slow
database query finally delivering its results.

Reading files Node’s way
var file1="data/data1.json";
fs.readFile (file1,

function(err,json1) {console.log("Report 1: from file "+file1);});

console.log("King fun 1");

var file2="data/data2.json";
fs.readFile (file2,

function(err,json2) {console.log("Report 2: from file "+file2);});
console.log("King fun 2");

var file3="data/data3.json";
fs.readFile (file3,

function(err,json3) {console.log("Report 3: from file "+file3);});

console.log("King fun 3");

data1.json 636
data2.json 2
data3.json 11

02.04.readasynch3.js

Try it out

In files:

• 02.03.readasynch.js

• 02.04.readasynch3.js

Synch vs asynch

<?php

echo 'Hello';

sleep(2000);

echo 'PHP';

echo 'world';

?>

console.log('Hello');

setTimeout(

function(){

console.log('World');

}, 2000);

console.log('JavaScript');

02.05.test.js

3. BASICS

Web server

Hello world web server

var http = require ("http");
var port = 8888;
var httpserver = http.createServer (handleRequest);

function handleRequest(request, response)
{

response.writeHead (200, {"Content-type":"text/plain"});
response.write ("Hello from node");
response.end();

}

httpserver.listen(port);
console.log ("Server listening at port: "+port);

Hello world web server (in 9 lines)

var http = require ("http");
var port = 8888;
var httpserver = http.createServer (handleRequest);

function handleRequest (request, response)
{

response.writeHead (200, {"Content-type":"text/plain"});
response.write ("Hello from node\n");
response.end();

}

httpserver.listen(port);
console.log ("Server listening at port: "+port);

Callback function to
handle requests

Let’s run it

In file: 03.01.server.js

• To stop server: Ctrl+C

• In browser:

localhost:8888

Or on a command line (in a new terminal window):

curl localhost:8888

Creating reusable HTTP server module:
03.02.myserver.js

var servConnectionManager =

{

…

};

Defining content types

//file extensions table to serve corresponding content-type to clients
extensions : {

".html": "text/html",
".css": "text/css",
".js": "application/javascript",
".png": "image/png",
".gif": "image/gif",
".jpg": "image/jpeg",
".eot":"font/opentype",
".ttf":"font/opentype",
".woff":"font/opentype"

},

Server init

init: function () //is called when server starts
{

this.http = require("http");
this.path = require("path");
this.filesys = require("fs");

//create http server
this.app = this.http.createServer(function(r, s) {

servConnectionManager.httpRequestHandler(r,s);
});

this.app.listen(this.port);
console.log ("Server listening at port:" +this.port);

},

Handler callback function: on request
httpRequestHandler: function (request, response) //serves pages and files on request

{

// look for a filename in the URL, default to index.html

var filename = this.path.basename(request.url) || "index.html";

var ext = this.path.extname(filename);

var dir = this.path.dirname(request.url).substring(1);

var localPath = 'public/'; // public folder contains the publicly visible content

if (servConnectionManager.extensions[ext]) {

localPath += (dir ? dir + "/" : "") + filename;

servConnectionManager.path.exists(localPath, function(exists) {

if (exists) {

servConnectionManager.getFile(localPath,
servConnectionManager.extensions[ext], response);

}

else {

response.writeHead(404);

response.end();

}

});}},

Serving requested file with header

getFile: function (localPath, mimeType, response)
{

this.filesys.readFile(localPath, function(err, contents)
{

if (!err)
{

response.writeHead(200,
{"Content-Type": mimeType,
"Content-Length": contents.length});
response.end(contents);

} else {
response.writeHead(500);
response.end();

}
});

},

Finally, export

module.exports = servConnectionManager;

To try

In file 03.03.serverstart.js:

var serverManager=require("./myserver");

serverManager.init();

To serve real files

• Create folder public/

• Put some html-css-font-javascript files

• If there is index.html, it can be served from:

localhost:8888

4. SIMPLE BOARD GAME

sockets

Web application:
traditional architecture

• Server code written in a scripting language (PHP,
Ruby, Python, or JavaScript)

• Server writes and reads data to and from a
persistence layer.

• No information is shared between requests except a
small amount of session data

• Everything to be remembered is stored in the
database (or a key-value store such as MongoDB).

TCP sockets

• All HTTP traffic over the web is transported via TCP
sockets.

• The browser opens a socket to the server, makes an
HTTP request for a resource, waits for it to finish
downloading, and then closes the socket.

• After the socket closes, sending any additional data
requires opening a new socket.

• If the server has something to tell the client, it needs
to wait until the client requests a new resource
before it can send data.

Direct interaction between clients:
traditional approach

• The server can’t immediately notify one client of
something another client does.

• In order to get a timely notification from a server,
client has to periodically request information.
This is called polling because the client
periodically polls the server for new information.

• Doing AJAX polling frequently can give the
appearance of a pseudo-real-time application in
which things happen even when the player isn’t
explicitly taking an action.

• Using traditional technologies, we could not
maintain an open dialog (data exchange)
between the client and the server

Flash sockets

• Flash has a socket support.
• You could use a Flash socket via a loaded flash file that

has an interface exposed over a Flash-to-JavaScript.
• The problem with Flash sockets is that they are not

secure:
– They use HTTP port 80 /HTTPS port 443, and thus make

normal HTTP requests impossible on these ports: you
cannot serve pages when you use these ports for flush
sockets.

– The normal requests need to be made through a
nonstandard ports, and this creates problems for clients
behind a household or corporate firewall.

Web sockets

• Web Sockets provide a socket-based, real-time, two-way
conversation mechanism natively to the browser.

• The idea is to upgrade a standard HTTP socket into a Web
Socket:

– Standard handshake technique that both server and
client understand.

– The socket is then kept open and allows bidirectional,
full-duplex communication between client and server.

WebSocket specification 2009 (www.w3.org/TR/websockets)

Browser support: WebSockets

• Different browsers support different versions
of the spec.

• All current-generation browsers except IE9
have some version of WebSockets turned on.

• Because of proxies, caches, and IE9, you can’t
use standard WebSockets without some
fallback.

Fallback with socket.io

• Instead of using straight WebSockets, there is a
Node.js library called socket.io that provides a
consistent client and server API regardless of
whether native WebSockets or one of the fallback
mechanisms are supported.

• Socket.io abstracts WebSockets and supported
fallbacks on both the client and the server side:
Socket.IO will use feature detection to decide if the
connection will be established with WebSocket, AJAX
long polling, Flash, etc

Supported transports

Socket.IO selects the most capable transport at
runtime, without it affecting the API.

• WebSocket

• Adobe® Flash® Socket

• AJAX long polling

• AJAX multipart streaming

• Forever Iframe

• JSONP Polling

Decreasing speed,
so it selects the top
available

Features of socket.io

• Capability to transparently send JSON data over
sockets

• Support for any number of custom events

• Integration with NodeJS servers: you can use a single
app to serve your HTTP methods, your WebSockets,
and your static files.

• Support for heartbeats, timeouts, and disconnection

Server side

• Socket.io works by listening for connection events.

• These events trigger a callback with a socket object as
a parameter.

• You can then attach additional listeners for both
standard events (such as disconnect) and custom
named events.

• To send data you call socket.emit with a name for the
event and any data that needs to be passed along.

• You can send events to all connected sockets except
the socket itself by calling socket.broadcast.emit.

Server code: socket listening
over http server

var httpserver= require('http').createServer(requestHandler) ;

app.listen(8888);

function requestHandler (req, res) {
…
}

//create socket listener
socket = require("socket.io");
socketio = socket.listen(httpserver);
socketio.sockets.on ('connection', function (socket)

{socketEventHandler(socket);}
);

Server code: socketRequestHandler

function socketEventHandler (socket)
{

socket.on('req_add_player', function (name)
{

var result =app.addPlayer(name);
socketio.sockets.socket(socket.id).emit('resp_added_player',result);

});

socket.on('req_start_game', function ()
{

var result = app.initGame();
socketio.sockets.emit('resp_update', result);

});

}

Emits JSON object to a
particular client

Broadcasts JSON object
to all connected clients

Client side

• You need to include a special JavaScript file in the head of
HTML:

<script src="/socket.io/socket.io.js"></script>

• This is a path created by socket.io on server.

• It also automatically determines which transport mechanism
to use: straight WebSockets or one of the fallbacks.

• Because the socket.io.js file was pulled from the same server
as the socket is being connected to, you don’t need to provide
a URI or port to connect to. (You can provide these if
necessary to connect to a different server.)

Client code: reference

In HTML head:

<script src="/socket.io/socket.io.js"></script>

Client: JavaScript
socket = io.connect();

//listens

socket.on('resp_updated_game',

function(currentPlayerID, state, gameTable)

{ gameState.state = state;

gameState.currentPlayerID = currentPlayerID;

gameState.gameTable = gameTable;

gameState.updateHTML();

});

//onclick

gameState.changeCellValue (x,y);

socket.emit('req_game_update', gameState.currentPlayerID, gameState.state,
gameState.gameTable);

Using socket.io for a simple chat

• Working code is in chat folder

• Copy node_modules folder (containing socket.io
module) into this folder

• From this folder: to start server

node chat.js

• To test chat - in two different browsers ask for:

localhost:8888

Tic-tac-toe: simple 2-player game

• Working code is in ttt folder

• Copy node_modules folder (containing socket.io
module) into this folder

• From this folder: to start server

node start

• To test game: open localhost:8888 in two different
browsers

Client code: listening for server data

init: function ()

{

//establish connection

this.socket = io.connect();

//set up socket listeners

this.socket.on (“custom message title“,

function (args) { what to do with args}

);

}

Client code: handling user events
• Click on login button (onclick=“requestlogin”):

//ends up in roomBrowser panel on success, or the same login screen
with errors

function requestLogin () {

var userName = document.getElementById("username").value;

if (!userName)

alert ("Enter your name to login");

var userData = {"username":userName};

this.socket.emit('req_login',userData);

}
Emits request for login

Server side

//Needs to listen for “req_login” event

socket.on('req_login', function (clientData){

var newuser = appRoomBrowser.getUser(clientData);

//resp_login - to a specific client
socketRouter.sockets.socket(sessionID).emit('resp_login',

newuser, appRoomBrowser.getRooms());

}

});

Emits response – to
the same user

Server: setting up socket

socketlibrary = require("socket.io");

var socketRouter = socketlibrary.listen(httpserver);

socketRouter.set('log level', 1)

socketRouter.sockets.on ('connection', socketEventHandler);

Name of a callback function

Need an HTTP server

Distinguishing clients:
unique socket identifier

function socketEventHandler (socket)

{

var sessionID = socket.id;

console.log("CLIENT CONNECTED with
socket.id="+sessionID);

sessions[sessionID]=-1; //guest id assigned

//After login:

sessions[sessionID] = newuser;

Parameter of every
socket event

Talking to a specific client

socketRouter.sockets.socket(sessionID).emit

('resp_session_id_assigned', sessionID);

socketRouter.sockets.socket(sessionID).emit

('resp_login', newuser, appRoomBrowser.getRooms());

Sending message to all clients

socketRouter.sockets.emit

('resp_browser_update',
appRoomBrowser.getRooms());

Virtual socket rooms

• Joining the room

socket.join(room.alias);

• Notifying everyone in the room

socketRouter.sockets.in(room.alias).emit

('resp_room_update',room);

Leaving rooms and closing the room

• when all disconnected, room will be cleared
automatically

for(var i = 0; i < room.players.length; i++) {

socketRouter.sockets.socket

(room.players[i].sessionID).disconnect();

}

“Disconnect” event
socket.on('disconnect', function () {

var user=sessions[sessionID];

//find if he was a part of a room

var roomAlias=user.assignedRoomAlias;

if (roomAlias) {

disconnect him from this room

//notify everyone in the room
socketRouter.sockets.in(room.alias).emit

('resp_room_deleted',appRoomBrowser.getRooms());

delete rooms[roomAlias];

}

//clear sessions

delete sessions[sessionID];

console.log("DISCONNECTED USER username="+user.username

+" session="+sessionID);

});

Room browser and handling user logins

• Working code in board_games.zip

• To start a server– you need to move into
board_games folder, open terminal and:

node js/start

• Then you can connect with multiple clients from

localhost:8888

